Chapter 2 Basics of Biological Networks

2.10verview

Protein-protein interaction (PPI) networks, biochemical networks, transcriptional
regulation networks, signal transduction or metabolic networks are often sharing some
characteristics and properties. Network analysis can be employed to reveal the
underlying network topological structures and provides useful network measures for
ranking network nodes. Therefore, identification of drug target, determining protein
function, and designing effective strategies for treating various diseases become
possible. This chapter will introduce the basic knowledge for performing analysis of
complex biological networks.

2.2 Graph Theory and Definitions

A graph G can be defined as a pair (V, E) where V is a set of vertices representing
the nodes and E is a set of edges E ={(i, j) | i, j €V} representing the connections
between the nodes. An edge between nodes i and j can also be associated with it a
weight functionw: E — R, where R denotes a real number. If an edge (i, j) exists

between nodes i and j, we say that the vertex i is adjacent to the vertex j.

A directed graph is defined as an ordered triple G = (V, E, f), where f is a function
that maps each edge element in E to an ordered pair of vertices in V. Thus, an edge E
= (i, j) is considered to have direction from i to j to reflect the flow of information
throughout the network.

Bipartite graph is an undirected graph G = (V, E) in which V can be partitioned
into 2 sets U and V such that (u,v) € E implies either ueU andveV or



veU and u eV . Applications of this type of graph to visualization or modeling of
biological networks range from representation of enzyme-reaction linked metabolic
networks to ontologies.
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The degree of a node in an undirected graph is the number of connections (or
edges) the node has to other nodes and is defined as deg(i) = k(i) = |N(i)| where N(i) is
the number of the nodes adjacent to node i. If a network is directed, then each node
has two different degrees, the in-degree degin(i) which is the number of incoming
edges to node i, and the out-degree degout(i) which is the number of outgoing edges
from node i.

Graph Isomorphism

Let G1= (V1, E1) and Go= (V2, Ey) be two undirected graphs. f :V, -V, is called
isomorphism if f is an edge-preserving mapping; that is for alla,b eV,, (a,b) € E;if
and only if (f (a), f(b)) € E, .
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The two graphs have different iopology but they are igomorphs.

Adjacency Matrix
The most common data structures that are used to make these networks computer
readable are adjacency matrices. Given a graph G = (V, E) the adjacency matrix

consistsof a |V [x|V |=nxn matrix A=[a;]suchthat a; =1(or=w; fora

weighted edge) if (i, j) € E ora; = 0otherwise.
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2.3 Network Measures

Looking at different network properties can provide valuable insight into the
internal organization of a biological network.

The graph density g defined as density g=2| E |/[|V | |V | -1)] shows how dense
or sparse a graph is according to the number of connections per node set. A sparse
graph is a graph where| E |=O(|V |') with 1< y < 2. It has been argued that biological
networks are generally sparsely connected, as this can confer an evolutionary
advantage for preserving robustness. A complete graph is a graph in which every pair
of nodes is adjacent. A clique is a complete subgraph of an undirected graph G.

Awalk is a pass through a specific sequence of nodes (v,,Vv,,...,v, ), which are
connected with edges{(v;,V,), (V,,V5),...,(v,_;,V, )} < E . Asimple path is a walk with
no repeated nodes. A trail is a path where no edge can be repeated.

The distance &(i, j) from i to j is the length of the shortest path fromi to j in G.
If no such path exists, then we set 5(i, j) = 0. The average path length of a graph G is
defined to be the average of shortest path lengths &(i, j) over all pairs of distinct
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_m;,z_;‘é(l’ i), where &(i, j) is the minimum
distance between nodes i and j. The diameter of a graph G is the maximum of the

nodes i,jeV(G): &

shortest path from i to j in G, defined as D = maxiyj[S(i, DI

Local Network Measures
(1) The Degree Distribution P(k)

It is the distribution of percentages of nodes that have degree k (i.e., the number of
edges it has). Node degree in PPI networks correlates with gene essentiality,
conservation rate, and disease causing likelihood. Networks that have a power-law
degree distribution are called *scale free’ networks because the shape of degree
distribution does not change with the size of the network.

(2) The Distribution of Clustering Coefficient
It is a measure that shows the tendency of a graph to be divided into clusters. A



cluster is a subset of vertices that contains a lot of edges connecting these vertices to
each other.

Assuming that i is a vertex with degree deg(i) = k(i) in an undirected graph G and
that there are e(i) edges between the k neighbors of i, then the local clustering
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coefficient of i in G is given by C, :L The closer the local clustering
k(i)[k()-1]
coefficient is to 1, the more likely it is for the network to form clusters.
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(3) Network Motifs

Network motifs are small subgraphs that occur in a network statistically more
often than in randomized networks. Motifs can define classes of networks, because
networks of similar types usually share many motifs, whereas networks of different
types do not. However, focusing only on overrepresented patterns in a network can
lead to losing valuable biological information about patterns that are functionally
significant but not over-represented. Signal transduction and gene regulatory networks
tend to be described by various motifs.

W) @ —@—® O—®
%) a B
0 ()

2gs € R DXL

Some network motifs: A) Three-node feedback. B) Three-node chain. C) Four-node feedback. D)
Feed-forward loop. E) Biparallel. F) Bi-Fan.
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(4) Node Ranking with Network Centralities
In biological networks, it is important to detect central nodes or intermediate
nodes that affect the topology of the network.

Degree Centrality C, (i) can reflect an important node involved in a large number of
interactions. For a node i, the degree centrality is calculated asC, (i) = deg(i) . Nodes



with very high degree centrality are called hubs since they are connected to many
neighbors. The removal of such central nodes has great impact on the topology of the
network. Biological networks are robust against random perturbations, but disruption
of hubs often leads to system failure.

Closeness CentralityC__(i) indicates important nodes that can communicate quickly
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with other nodes of the network C (i) = N, (i) Z&(i, J) with N_ (i) being the
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number of nodes accessible by node i.

For the network shown above, the node V; can access 4 nodes (V2, Vs, Vs, V7) with
step 1, 1 node (V3) with step 2, and 1 node (V,) with step 3, the sum of the shortest

path lengths isd, = 25(1, J)=4x1+1x%x2+1x3=9. There are 6 nodes accessible
i

from node V1, soC_, (1) =6/9.
For the node V>, 6 nodes can also be accessed by V. The sum of the shortest path

lengths isd, = 25(2, j)=2x1+4x2=10,s0C, (2) =6/10. As aresult, VV; is more
j
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central than node V».

Betweenness Centrality C, (i) shows that nodes which are intermediate between
neighbors rank higher. High betweenness centrality reflects important nodes that lie
on a high proportion of paths between other nodes in the network and become
“bottlenecks”, for their role as key connector with essential functional and dynamic
properties.

For the same network shown above, N (1)=12 because there are 12 shortest paths

that pass through node V3. These paths from the starting to the ending node are
{V2-Vs, V2-Vg, V2-V7, V3-Vs, V3-Vg, V3-V7, V4-Vs, V-V, V4-V7, V5-Vg, Vs-V7,
Ve-V7}.

N,(2) =8 because 8 there are shortest paths passing through node V.. These paths

are {V1-Vs, V1-Vy, V3-Vs, V3-Vg, V3-V7, V4-Vs, Via-Ve, Vi-V7}.



N, (3) = 5With {V1-Va, V-V, V-V, V-V, Va-V7}.

N,(4)=N,(5) =N, (6) =N (7) =0. The total sum of shortest paths that pass through

the nodes was calculated to be N | = z N, (J)=25. Thus the centralities are
i

C,(1)=12/25=0.48, C,(2)=8/25=0.32, C,(3)=5/25=0.20,
C,(4)=C,(5) =C,(6) =C,(7) =0, indicating node V, to be more central.

Eigenvector Centrality ranks higher the nodes that are connected to important
neighbors.

Eccentricity Centrality is the measure that shows how easily accessible a node is from
other nodes. Let G = (V, E) be an undirected graph. The eccentricity centrality is

defined as C,(i) :]7/maxj[5(i, 1, where 6(i, j) is the shortest path between

nodes i and j. The eccentricity C__(i) Cecc of a node i is the greatest distance

ecc

between i and any other node.
With the following tool network as an example,
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V1 can access 4 nodes (V2, Vs, Vs, Vi) with step 1 and 2 nodes (V4, V7) with step 2.

The maximum shortest path max ,-[5(1' N=2.

V; can access 3 nodes (Va4, V7, V1) with step 1 and 3 nodes (V3, Vs, Vg) with step 2.

The maximum shortest path max j[5(2, j1=2.

V3 accesses 2 nodes (V1, V4) with step 1, 3 nodes (V2, Vs, Vi) and one node (V7) with

step 3, leading tomax J_[5(3, j1=3;

V4 2% 1,2 x 2,2 % 3; The maximum shortest path maxj[5(4, j1=3;



Vs 1% 1,3 x2,2x 3; The maximum shortest path maxj[§(5, j1=3;
Ve: 1% 1,3 x 2,2 x 3; The maximum shortest path maxj[5(6, j1=3;

V7:1x%x1,2x2,3x 3; The maximum shortest path maxj[5(7, j1=3.

As a result, the ordering of the nodes accordingto C__(i) is {V1,V2},{V3,V4,V5, Vs,
V7}. In biological networks, proteins with high eccentricity are easily reachable by
other components of the network, and thus can readily perceive changes in
concentration of other proteins they are linked to. In contrast, those proteins that have
lower eccentricities will often play a marginal functional role in the system.

Subgraph Centrality is the measure that ranks nodes according to the number of
subgraphs of the overall network in which the node participates, with more weight
given to small subgraphs.

Global Network Measures
Some useful global network measures include (1) average degree of a

network:d = ZkP(k) ; (2)Number of edges in a network: Nd/2; (3)Average network
k

diameter D = maXx; ;[

(i, j)]; and (4)The average clustering coefficient of the
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N = k'(ki -1)

whole network givenby C,, =

vertices.

It was noted that biological networks have a significantly higher average
clustering coefficient compared to random networks, which proves their modular
nature. But these properties alone are not descriptive enough to capture complex
topological characteristics of biological networks. Local network properties represent
more constraining measures of network structure than global network properties and
provide additional means for describing networks.

2.4 Network Models

To visually represent the properties of the network we usually rank the vertices
according to their degree and then plot the degree versus the rank of each vertex.
Another representation is to create a histogram by plotting the vertices of the graph
sorted according to their degree using a logarithmic scale. A third and very popular



representation is to plot the degrees of the nodes sorted versus either their degree
distribution P(k).
Erdds-Rényi model for random networks

This model was mainly introduced to describe the properties of a random
network. The simple model involves taking a number of vertices N and connecting
nodes by selecting edges from the N(N-1)/2 possible edges randomly. The probability
of obtaining a random graph G with N nodes and n edges is given by
P(G) = p"(1— p)"™ 2™ Thus, the probability of a vertex to have degree k
becomes P(k) = e *> <k >*/k!, where <k > is the average connectivity of the
network. The average degree has a value of <k >=2n/N = p(N —1) = pN does have
a critical value that is independent of the system size. The probability that two of the
neighbors in a random network are connected is equal to the probability that two
randomly selected nodes are connected. Consequently the clustering coefficient of a
random graphis C_,=p=<k>/N.
Watts and Strogatz model for small-world networks

This model was introduced to describe networks with the small world topology.
This type of topology characterizes many biological networks, like metabolic
networks where paths of few (3-4) reactions link most metabolites. As a consequence,
local changes in metabolite concentration will propagate throughout the entire
network. In this model, the degree distribution follows a power-law equation
P(k) =k, in which most nodes are connected with small proportion of other nodes
and a small proportion of nodes are highly connected. Thus each vertex is connected
to N/2 nearest neighbors.

Barabasi-Albert model for scale-free networks

The networks are built to mimic gene duplication events, such that they expand
continuously by addition of new nodes and the new nodes attach preferentially to sites
that are already well connected.
We start with small number of nodes my. At each step, a new node m <my is added and
gets linked to the existing network. The probability that a new node is connected to

nodeiis P(k)= k,/z k; , where k; is the degree of node i. The rate of connecting
j

new nodes to node i is ok; /ot = Ak[ki/z k;]1=mk;/(2mt) = k; /(2t) . The connection
j

is time-dependent so k;(t) = m4/t/t, , where tis the time point when node i enters

network. The probability that a node has degree smaller than k is t, > m2t/k2 . So the



probability density of the network is P(k) = op(k; (t) <k)/ok ~ k=, a power law

distribution of y ~ 3.

2.5 Integration of Networks and Data

To understand a living cell, one needs to study all of its components as an
interconnected system rather than a collection of individual parts. Current
high-throughput technologies do not capture the details of spatial and time
heterogeneity of interactions. To understand complex biological phenomena, we
should try to combine and use all biological data that are available. Biological
networks are commonly combined with microarray data, proteomics data,
metabolomics data, genomic data, isotope labeling experiments and biomarkers. At
present, proteomics technologies are still in development and many proteins,
especially those with low abundance, are difficult to quantify. When using
transcriptomics in place of proteomics, one should be aware that some factors, e.g.,
posttranscriptional and posttranslational regulations, may lead to poor correlation
between RNA abundance and protein levels.

Metabolic networks include all biochemical reactions inferred from genome
annotations. These networks in their stoichiometric form can be used in diverse
applications, ranging from estimating the flux distribution of an organism under
specific conditions to understanding of the robustness and evolution of metabolism.
Recent improvements on the accuracy of metabolomics have enabled estimating
parameters of kinetic models of large-scale metabolic network to convert the ‘-omics’
data into model parameters.

Unlike metabolic networks, which represent flow of mass, gene regulatory
networks (GRNSs) represent information flow. Hence, algorithms for integration of
high-throughput data with GRNs require different computational approaches. Parts of
the GRN that are activated under specific time points and conditions, called activated
subnetworks, can be identified by integrating GRN with gene expression data. A cell
might use different activated subnetwork to respond to different environmental
stresses. It is easier to find activated subnetworks if the GRN has a modular structure.
Topological analysis of the GRN can identify the isolated modules. Microarray data
from different environmental stimuli can be combined with GRN modules by
calculating covariance between the input stimuli and its transcriptional response to
identify subnetworks activated by the stimuli.



Compared to GRN, PPI networks are larger, more suitable for applying omics
approaches and can be used to predict protein function. Network-based approaches for
predicting protein function or involvement in a disease can be divided into two types:
‘direct annotation’ approaches, which infer the characteristic of a protein based on its
connections in the network; and ‘module-assisted” approaches, which first identify
modules of related proteins, and then annotate each module based on characteristics
of its annotated members.

Network-based approaches were used to study drug resistance, which is one of
the major challenges in current treatment strategies, from infectious disease to cancer.
When cells are exposed to hostile environment, such as drug treatment, cells tend to
rewire themselves to survive in the new environment. It is a multifactorial process and
can involve several proteins. Therefore, a systems level approach is required to
understand the mechanism of drug resistance and to identify combinatorial therapy.



