
Chapter 2 Basics of Biological Networks 
 
2.1Overview 

Protein-protein interaction (PPI) networks, biochemical networks, transcriptional 
regulation networks, signal transduction or metabolic networks are often sharing some 
characteristics and properties. Network analysis can be employed to reveal the 
underlying network topological structures and provides useful network measures for 
ranking network nodes. Therefore, identification of drug target, determining protein 
function, and designing effective strategies for treating various diseases become 
possible. This chapter will introduce the basic knowledge for performing analysis of 
complex biological networks. 
 
2.2 Graph Theory and Definitions 

A graph G can be defined as a pair (V, E) where V is a set of vertices representing 
the nodes and E is a set of edges {( , ) | , }E i j i j V= ∈ representing the connections 
between the nodes. An edge between nodes i and j can also be associated with it a 
weight function :w E R→ , where R denotes a real number. If an edge (i, j) exists 
between nodes i and j, we say that the vertex i is adjacent to the vertex j. 

 
A directed graph is defined as an ordered triple G = (V, E, f), where f is a function 

that maps each edge element in E to an ordered pair of vertices in V. Thus, an edge E 
= (i, j) is considered to have direction from i to j to reflect the flow of information 
throughout the network. 

 
Bipartite graph is an undirected graph G = (V, E) in which V can be partitioned 

into 2 sets U and V such that ( , )u v E∈ implies either and u U v V∈ ∈  or 



and v U u V∈ ∈ . Applications of this type of graph to visualization or modeling of 
biological networks range from representation of enzyme-reaction linked metabolic 
networks to ontologies. 

 
The degree of a node in an undirected graph is the number of connections (or 

edges) the node has to other nodes and is defined as deg(i) = k(i) = |N(i)| where N(i) is 
the number of the nodes adjacent to node i. If a network is directed, then each node 
has two different degrees, the in-degree degin(i) which is the number of incoming 
edges to node i, and the out-degree degout(i) which is the number of outgoing edges 
from node i. 
Graph Isomorphism 
Let G1= (V1, E1) and G2= (V2, E2) be two undirected graphs. 1 2:f V V→ is called 
isomorphism if f is an edge-preserving mapping; that is for all 1,a b V∈ , 1( , )a b E∈ if 
and only if 2( ( ), ( ))f a f b E∈ . 

 
The two graphs have different topology but they are isomorphs. 

 
Adjacency Matrix 

The most common data structures that are used to make these networks computer 
readable are adjacency matrices. Given a graph G = (V, E) the adjacency matrix 

consists of a | | | |V V n n× = ×  matrix [ ]ijA a= such that 1ija = (or = ijw for a 

weighted edge) if ( , )i j E∈ or 0ija = otherwise. 
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2.3 Network Measures 

Looking at different network properties can provide valuable insight into the 
internal organization of a biological network. 

The graph density g defined as density g= 2 | | [| | (| | 1)]E V V − shows how dense 
or sparse a graph is according to the number of connections per node set. A sparse 
graph is a graph where | | (| | ) with 1 2E O V γ γ= < < . It has been argued that biological 
networks are generally sparsely connected, as this can confer an evolutionary 
advantage for preserving robustness. A complete graph is a graph in which every pair 
of nodes is adjacent. A clique is a complete subgraph of an undirected graph G. 

A walk is a pass through a specific sequence of nodes 1 2( , ,..., )Lv v v , which are 
connected with edges 1 2 2 3 1{( , ),( , ),..., ( , )}L Lv v v v v v E− ⊆ . A simple path is a walk with 
no repeated nodes. A trail is a path where no edge can be repeated. 

The distance ( , )i jδ from i to j is the length of the shortest path from i to j in G. 
If no such path exists, then we set ( , )i jδ = ∞ . The average path length of a graph G is 
defined to be the average of shortest path lengths ( , )i jδ  over all pairs of distinct 

nodes , ( )i j V G∈ : 
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distance between nodes i and j. The diameter of a graph G is the maximum of the 

shortest path from i to j in G, defined as
,

[ ( , )]max i jD i jδ= . 

Local Network Measures 
(1) The Degree Distribution ( )P k  

It is the distribution of percentages of nodes that have degree k (i.e., the number of 
edges it has). Node degree in PPI networks correlates with gene essentiality, 
conservation rate, and disease causing likelihood. Networks that have a power-law 
degree distribution are called ‘scale free’ networks because the shape of degree 
distribution does not change with the size of the network. 
 
(2) The Distribution of Clustering Coefficient 

It is a measure that shows the tendency of a graph to be divided into clusters. A 



cluster is a subset of vertices that contains a lot of edges connecting these vertices to 
each other. 

Assuming that i is a vertex with degree deg(i) = k(i) in an undirected graph G and 
that there are e(i) edges between the k neighbors of i, then the local clustering 

coefficient of i in G is given by 2 ( )
( )[ ( ) 1]i

e iC
k i k i

=
−

. The closer the local clustering 

coefficient is to 1, the more likely it is for the network to form clusters. 

 
(3) Network Motifs  

Network motifs are small subgraphs that occur in a network statistically more 
often than in randomized networks. Motifs can define classes of networks, because 
networks of similar types usually share many motifs, whereas networks of different 
types do not. However, focusing only on overrepresented patterns in a network can 
lead to losing valuable biological information about patterns that are functionally 
significant but not over-represented. Signal transduction and gene regulatory networks 
tend to be described by various motifs. 

 
Some network motifs: A) Three-node feedback. B) Three-node chain. C) Four-node feedback. D) 

Feed-forward loop. E) Biparallel. F) Bi-Fan. 
 

(4) Node Ranking with Network Centralities 
In biological networks, it is important to detect central nodes or intermediate 

nodes that affect the topology of the network. 
 

Degree Centrality ( )dC i  can reflect an important node involved in a large number of 
interactions. For a node i, the degree centrality is calculated as ( ) deg( )dC i i= . Nodes 



with very high degree centrality are called hubs since they are connected to many 
neighbors. The removal of such central nodes has great impact on the topology of the 
network. Biological networks are robust against random perturbations, but disruption 
of hubs often leads to system failure. 
 
Closeness Centrality ( )cloC i  indicates important nodes that can communicate quickly 

with other nodes of the network ( ) ( ) ( , )
N

clo acc
j V

C i N i i jδ
∈

= ∑  with ( )accN i being the 

number of nodes accessible by node i. 

 
For the network shown above, the node V1 can access 4 nodes (V2, V5, V6, V7) with 
step 1, 1 node (V3) with step 2, and 1 node (V4) with step 3, the sum of the shortest 

path lengths is 1 (1, )
j

d jd= =∑ 4 × 1 + 1 × 2 + 1 × 3= 9. There are 6 nodes accessible 

from node V1, so (1) 6 9cloC = . 
For the node V2, 6 nodes can also be accessed by V2. The sum of the shortest path 

lengths is 2 (2, )
j

d jd= =∑ 2 × 1 + 4 × 2 = 10, so (2) 6 10cloC = . As a result, V1 is more 

central than node V2. 
 
Betweenness Centrality ( )bC i shows that nodes which are intermediate between 
neighbors rank higher. High betweenness centrality reflects important nodes that lie 
on a high proportion of paths between other nodes in the network and become 
“bottlenecks”, for their role as key connector with essential functional and dynamic 
properties.  

For the same network shown above, (1) 12pN =  because there are 12 shortest paths 

that pass through node V1. These paths from the starting to the ending node are 
{V2-V5, V2-V6, V2-V7, V3-V5, V3-V6, V3-V7, V4-V5, V4-V6, V4-V7, V5-V6, V5-V7, 
V6-V7}. 

(2) 8pN =  because 8 there are shortest paths passing through node V2. These paths 

are {V1-V3, V1-V4, V3-V5, V3-V6, V3-V7, V4-V5, V4-V6, V4-V7}. 



(3) 5pN = with {V1-V4, V2-V4, V4-V5, V4-V6, V4-V7}. 

(4) (5) (6) (7) 0p p p pN N N N= = = = . The total sum of shortest paths that pass through 

the nodes was calculated to be ( ) 25p p
j

N N j= =∑ . Thus the centralities are 

(1) 12 25 0.48bC = = , (2) 8 25 0.32bC = = , (3) 5 25 0.20bC = = , 
(4) (5) (6) (7) 0b b b bC C C C= = = = , indicating node V1 to be more central. 

 
Eigenvector Centrality ranks higher the nodes that are connected to important 
neighbors. 
 
Eccentricity Centrality is the measure that shows how easily accessible a node is from 
other nodes. Let G = (V, E) be an undirected graph. The eccentricity centrality is 

defined as ( ) 1 [ ( , )]maxecc jC i i jδ= , where ( , )i jδ  is the shortest path between 

nodes i and j. The eccentricity ( )eccC i Cecc of a node i is the greatest distance 
between i and any other node. 

With the following tool network as an example, 

 

V1 can access 4 nodes (V2, V3, V5, V6) with step 1 and 2 nodes (V4, V7) with step 2. 

The maximum shortest path [ (1, )] 2max j jδ = . 

V2 can access 3 nodes (V4, V7, V1) with step 1 and 3 nodes (V3, V5, V6) with step 2. 

The maximum shortest path [ (2, ] 2max j jδ = .  

V3 accesses 2 nodes (V1, V4) with step 1, 3 nodes (V2, V5, V6) and one node (V7) with 

step 3, leading to [ (3, ] 3max j jδ = ; 

V4: 2 × 1, 2 × 2, 2 × 3; The maximum shortest path [ (4, ] 3max j jδ = ;  



V5: 1 × 1, 3 × 2, 2 × 3; The maximum shortest path [ (5, ] 3max j jδ = ; 

V6: 1 × 1, 3 × 2, 2 × 3; The maximum shortest path [ (6, ] 3max j jδ = ;  

V7: 1 × 1, 2 × 2, 3 × 3; The maximum shortest path [ (7, ] 3max j jδ = .  

As a result, the ordering of the nodes according to ( )eccC i is {V1,V2},{V3,V4,V5,V6, 
V7}. In biological networks, proteins with high eccentricity are easily reachable by 
other components of the network, and thus can readily perceive changes in 
concentration of other proteins they are linked to. In contrast, those proteins that have 
lower eccentricities will often play a marginal functional role in the system. 
 
Subgraph Centrality is the measure that ranks nodes according to the number of 
subgraphs of the overall network in which the node participates, with more weight 
given to small subgraphs. 
 
Global Network Measures 
Some useful global network measures include (1) average degree of a 

network: ( )
k

d kP k=∑ ; (2)Number of edges in a network: Nd/2; (3)Average network 

diameter min,
[ ( , )]max i jD i jδ= ; and (4)The average clustering coefficient of the 

whole network given by 
1
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vertices. 
It was noted that biological networks have a significantly higher average 

clustering coefficient compared to random networks, which proves their modular 
nature. But these properties alone are not descriptive enough to capture complex 
topological characteristics of biological networks. Local network properties represent 
more constraining measures of network structure than global network properties and 
provide additional means for describing networks. 
 
 
2.4 Network Models 

To visually represent the properties of the network we usually rank the vertices 
according to their degree and then plot the degree versus the rank of each vertex. 
Another representation is to create a histogram by plotting the vertices of the graph 
sorted according to their degree using a logarithmic scale. A third and very popular 



representation is to plot the degrees of the nodes sorted versus either their degree 
distribution P(k). 
Erdös-Rényi model for random networks 

This model was mainly introduced to describe the properties of a random 
network. The simple model involves taking a number of vertices N and connecting 
nodes by selecting edges from the N(N-1)/2 possible edges randomly. The probability 
of obtaining a random graph G with N nodes and n edges is given by 

( 1) 2( ) (1 )n N N nP G p p − −= − . Thus, the probability of a vertex to have degree k 
becomes ( ) !k kP k e k k−< >= < > , where k< >  is the average connectivity of the 
network. The average degree has a value of 2 ( 1)k n N p N pN< >= = −  does have 
a critical value that is independent of the system size. The probability that two of the 
neighbors in a random network are connected is equal to the probability that two 
randomly selected nodes are connected. Consequently the clustering coefficient of a 
random graph is randC p k N= = < > . 
 
Watts and Strogatz model for small-world networks 

This model was introduced to describe networks with the small world topology. 
This type of topology characterizes many biological networks, like metabolic 
networks where paths of few (3-4) reactions link most metabolites. As a consequence, 
local changes in metabolite concentration will propagate throughout the entire 
network. In this model, the degree distribution follows a power-law equation 

( )P k k γ−= , in which most nodes are connected with small proportion of other nodes 
and a small proportion of nodes are highly connected. Thus each vertex is connected 
to N/2 nearest neighbors. 
 
Barabasi-Albert model for scale-free networks 

The networks are built to mimic gene duplication events, such that they expand 
continuously by addition of new nodes and the new nodes attach preferentially to sites 
that are already well connected. 
We start with small number of nodes m0. At each step, a new node m <m0 is added and 
gets linked to the existing network. The probability that a new node is connected to 

node i is ( )i i j
j

P k k k= ∑ , where ik  is the degree of node i. The rate of connecting 

new nodes to node i is [ ] (2 ) (2 )i i j i i
j

k t k k k mk mt k t∂ ∂ = ∆ = =∑ . The connection 

is time-dependent so ( )i ik t m t t= , where it is the time point when node i enters 

network. The probability that a node has degree smaller than k is 2 2
it m t k> . So the 



probability density of the network is 3( ) ( ( ) )iP k p k t k k k −= ∂ < ∂ − , a power law 

distribution of 3γ  . 
 

 
2.5 Integration of Networks and Data 

To understand a living cell, one needs to study all of its components as an 
interconnected system rather than a collection of individual parts. Current 
high-throughput technologies do not capture the details of spatial and time 
heterogeneity of interactions. To understand complex biological phenomena, we 
should try to combine and use all biological data that are available. Biological 
networks are commonly combined with microarray data, proteomics data, 
metabolomics data, genomic data, isotope labeling experiments and biomarkers. At 
present, proteomics technologies are still in development and many proteins, 
especially those with low abundance, are difficult to quantify. When using 
transcriptomics in place of proteomics, one should be aware that some factors, e.g., 
posttranscriptional and posttranslational regulations, may lead to poor correlation 
between RNA abundance and protein levels. 
 

Metabolic networks include all biochemical reactions inferred from genome 
annotations. These networks in their stoichiometric form can be used in diverse 
applications, ranging from estimating the flux distribution of an organism under 
specific conditions to understanding of the robustness and evolution of metabolism. 
Recent improvements on the accuracy of metabolomics have enabled estimating 
parameters of kinetic models of large-scale metabolic network to convert the ‘-omics’ 
data into model parameters. 
 

Unlike metabolic networks, which represent flow of mass, gene regulatory 
networks (GRNs) represent information flow. Hence, algorithms for integration of 
high-throughput data with GRNs require different computational approaches. Parts of 
the GRN that are activated under specific time points and conditions, called activated 
subnetworks, can be identified by integrating GRN with gene expression data. A cell 
might use different activated subnetwork to respond to different environmental 
stresses. It is easier to find activated subnetworks if the GRN has a modular structure. 
Topological analysis of the GRN can identify the isolated modules. Microarray data 
from different environmental stimuli can be combined with GRN modules by 
calculating covariance between the input stimuli and its transcriptional response to 
identify subnetworks activated by the stimuli. 



 
Compared to GRN, PPI networks are larger, more suitable for applying omics 

approaches and can be used to predict protein function. Network-based approaches for 
predicting protein function or involvement in a disease can be divided into two types: 
‘direct annotation’ approaches, which infer the characteristic of a protein based on its 
connections in the network; and ‘module-assisted’ approaches, which first identify 
modules of related proteins, and then annotate each module based on characteristics 
of its annotated members. 

 
Network-based approaches were used to study drug resistance, which is one of 

the major challenges in current treatment strategies, from infectious disease to cancer. 
When cells are exposed to hostile environment, such as drug treatment, cells tend to 
rewire themselves to survive in the new environment. It is a multifactorial process and 
can involve several proteins. Therefore, a systems level approach is required to 
understand the mechanism of drug resistance and to identify combinatorial therapy. 


